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ABSTRACT 

In cytogenetics, automated chromosome analysis is an important task which involves segmentation of 

chromosomes and their classification into one of 24 groups. An effective automatic analysis would greatly help the 

cytogeneticist usual work. The important step in the analysis of chromosomes is the segmentation step. In this paper, 

we analyzed eight disentangling methods and compared their performance in segmenting chromosomes and 

chromosomes clusters. A detailed analysis of the results highlights that, even though every single algorithm shows 

their own strong/weak points, the method using geometric evidence and image information has the overall best 

performance. 
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1. INTRODUCTION 

Chromosome karyotyping is an essential task in clinical and cancer cytogenetic laboratories for screening 

and diagnosis. Chromosome karyotyping is the process of arranging all the chromosomes in a cell graphically, 

according to an international system for cytogenetic nomenclature (ISCN) classification. Chromosomes are first need 

to be stained with fluorescent dye and then it is imaged through a microscope for successive analysis and 

classification. Each chromosome in the image has to be identified and assigned to one of 24 classes: the result so 

called karyotype image. The most common methods of dye-based chromosome banding are G-(Giemsa), R-(reverse), 

C-(centromere) and Q-(quinacrine) banding. Q- bands are considered equivalent to G- bands. G- and R- bands are 

the most commonly used techniques for chromosome karyotyping. As the banding patterns of metaphase images are 

clearly visible, most of the studies concentrates on such metaphase images.  Figure 1 shows the four different 

bandings of chromosome images. 

The first step in chromosome analysis is segmentation, which includes resolving touching and overlapping 

chromosomes. There is a variety of disentangling methods proposed in the literature for both banded and unbanded 

chromosome images. All these methods are based on five main ideas: skeleton, shape concavities, shape validation, 

pale paths (between touching chromosomes) and classification driven segmentation. Most of the authors use any one 

of these techniques and some many combine one or more techniques for disentangling the chromosomes.  

 
Fig.1.Different bandings of chromosome images 

Geometric descriptors such as concavities and boundary curvature along the object boundaries are used for 

detecting candidates for cut points. Concavities are usually detected by points of large negative deflecting angle or 

large negative curvature or by local methods. In both convex and concave points are used for separating the cluster, 

where concave points are used to define the cut points and convex points are used to define the end points. Another 

important descriptor is the skeleton, which is a 1D representation of components, by strokes of thickness one in its 

interior. The nodes of the skeleton indicate touching and overlapping points of the chromosomes. The boundary in 

their neighborhood is searched for finding the potential cut points. Some works uses pale paths between concave 

points as potential cut points.  

Usually more cut points are obtained than actually needed. From all the cut points, some suitable cut points 

need to be selected. Some of the authors validate the potential cuts, by using geometric information about the 

components. In classification-based method the cut points are selected after classifying the corresponding 

chromosome segments. However, this method is used by the authors for separating clusters of two chromosomes 

only. 

Ji (1989), uses ‘pale path’ technique, Agam and Dinstein (1997), uses boundary curvature to separate 

touching and slightly overlapping chromosomes, Graham (2002), tried to integrate the segmentation and 

classification steps to resolve overlaps and adjacencies. Lerner (1998), proposed a classification driven segmentation. 
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Ritter and Gao (2008), proposed a method that relies on the generation of number of possible chromosome 

configurations called ‘variants’. Grisan (2009), uses space variant thresholding scheme and introduces single 

chromosome-likelihood (SCL) for cluster analysis. Karvelis (2005), uses watershed transform and gradient paths; 

moreover this can be extended for multi-spectral images. 

  Even though these algorithms give better results, they have some limitations. The aim of this work is to 

measure and compare the performance of all the above quoted algorithms. The performance is analysed based on 

accuracy, the type of images they have used for testing their algorithms and the ability of their algorithms in resolving 

complex images. 

 The layout of this paper is as follows: In Section II, the data sets used by the authors considered in this work, 

is given. Section III gives a brief explanation about the eight disentangling methods. In Section IV, the segmentation 

results of these eight methods are shown and in Section V those methods are discussed. The conclusion of the paper 

is presented in Section VI.  

Data Sets: Most of the authors considered in this work, uses their own database of images for testing their algorithm, 

and few authors uses publicly available database. Ji (1989), uses his own database for testing, in which the cells are 

stained homogeneously with Giemsa or Orcein and digitised automatically on the MRC’s Fast Interval Processor 

(FIP). 256 homogeneously Giemsa stained G-banded cells and 457 Orcein stained unbanded cells from the data set 

were selected for testing. Ji (1989), uses the dataset which comprised of 458 clusters of G-banded chromosomes 

selected manually from 125 cells and 565 clusters of Orcein stained unbanded chromosomes selected visually from 

102 cells. The overlapping pairs present in the database were ignored during testing. Karvelis (2005), uses database 

of images collected at the Department of General Biology, Medical School of University of Ioannina. The database 

consists of 940 chromosomes: 515 isolated, 396 touching and 29 overlapping. Popescu (1999), created their own 

chromosome image library which consists of 3979 chromosomes that includes isolated, non-overlapped, non-rotated 

chromosome images extracted from 209 cell images. The training set consisted of 3582 chromosomes, approximately 

149 chromosomes per class, with the test set containing 397 chromosomes, approximately 16 chromosomes per class. 

Ritter and Gao (2008), forms Pki-3 dataset from the already available dataset Pki. The Pki dataset consists of 971 

Giemsa stained pro- and amnion and blood cells at pro- or metaphase compiled at the local cytogenetical institute in 

Passau/Germany for routine cytogenetic screening. All cells at late metaphase, characterized by split arms, were 

removed, and a new dataset was created with the remaining cells. The new dataset thus formed was named as Pki-3 

and it contains 612 cells with 28148 chromosomes.  Lerner (1998), uses database of manually collected images, 

which consists of around 300 images with approximately 100 from each class of ‘brokens’ and ‘wholes’. This dataset 

consists of around 481 chromosome images. The dataset used by Grisan (2009), is composed of 162 images, 

containing a total number of 6683 Q-banded chromosomes. Graham (2002), uses a publicly available ‘600-band’ 

dataset containing 6177 chromosomes obtained from 136 G-banded cells. For each chromosome, there is an isolated 

image, the class specified by a cytogeneticist, and an identifier for its cell of origin. 

2. METHODS 

In this section, we briefly describe all the disentangling techniques we have taken into account. We analyzed 

each methods and performance is compared based on their accuracy in resolving touching and overlapping 

configurations of chromosomes. 

Boundary Curvature and Pale Path: In ‘boundary curvature and pale path’ technique, Ji (1989), describes the 

method for splitting the chromosomes in a cluster with only few chromosomes. The major characteristic of this 

method is determining a cut point and relevant associated path. For this, they proposed two algorithms. In the first 

algorithm, first cut point is taken as the reference point. The distance between the reference point and every cut point 

on the boundary is calculated. Then local minima of this distance function are found and the one with least distance 

value is selected. The vertex corresponding to these local minima is taken as a candidate for the second cut point. If 

the distance between these two cut points is less than a threshold, then that is the required path. If the distance 

between these two possible cut points exceeds the threshold then they proceed with the second algorithm. 

 Algorithm 2 generates a path beginning at the first cut point based on the direction, search range and criterion 

of density. Initial direction of the path is the bisector of the boundary angle at the first cut point. The direction is 

recomputed after every‘d’ pixels. Search range is the set of points lying within the object whose displacement from 

the current point is not more than 3 pixels in the search direction, nor more than 3 pixels in the perpendicular 

direction. At each step, the least density points are found in the two directions of the search range. The densities of 

the pixels which lie along the direction are weighted and the one which has least density is chosen as the ‘next’ point 

in the path. The search then starts again from the next point and continues until the boundary is reached. In [28], 

authors uses this boundary curvature and pale path technique in their work, for detecting cut points and cut lines, to 

separate the overlapped chromosomes. 

CPOOS Method: The idea behind Classification-Driven Partially Occluded Object Segmentation (CPOOS) method 

is, classification of segmented images created by connecting points of high concavity along curvatures, to resolve 
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partial occlusion in images. Initially, isolated objects in the image are classified into their classes. Thereafter the 

CPOOS method is applied to those clusters in the image that could not be separated. Clusters of touching objects are 

identified by their size and their failure to be classified as one of the object classes. To draw possible separating lines 

between touching objects, ‘r’ most concave points along the curvature are selected and considered as potential cut 

points. From those ‘r’ potential cut points, the points which are closer than a distance ‘s’ from more acutely concave 

points are eliminated. The values used for ‘r’ and‘s’ are chosen as 8 and 10 respectively. Finally, separation lines are 

obtained by connecting the pairs of cut points. The two segments formed by the separation line are assumed as 

touching objects. A trained classifier with ‘apriori’ knowledge of the identity of two chromosomes that compose the 

cluster is then used to verify the corresponding hypothesis. A multilayer perceptron (MLP) trained by back 

propagation learning algorithm is used to select correct separation line.  

Recursive Watershed Transform: Initial segmentation of the image is created using the watershed transform. Next, 

watershed transform is recursively applied to every segmented area, until there are no new areas. The final segmented 

chromosome areas are formed by computing all paths starting from high concavity points. For a measure of 

separation of points in the image, the distance transform is used. The number of regional minima of the negative 

distance transforms acts as an indicator to the watershed transform which depicts the number of objects that need to 

be segmented. 

The distance metrics used to compute the distance transform include 

L1: |x1 − x2| + |y1 − y2|              ... (1) 

𝐿2: √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2      ... (2) 

𝐿∞:max(|𝑥1 − 𝑥2|, |y1 − y2| )   ... (3) 

When applying watershed transform, over segmentation results due to the fact that chromosomes are not 

completely circular to present exactly one minimum to the distance transform. Hence, grayscale reconstruction is 

used to reduce the number of maxima-minima in a grayscale image. 

The grayscale reconstruction 𝑝𝐼(𝐽) of (mask) 𝐼 from (marker) 𝐽 is: 

∀𝑝 ∈ 𝐷𝑏   ... (4) 

𝜌𝐼(𝐽) = {𝑘 ∈ [0, 𝑁 − 1]|𝑝 ∈ 𝜌𝑇𝑘(𝐼)(𝑇𝑘(𝐽))}   ... (5) 

𝑇𝑘(𝐼) = {𝑝 ∈ 𝐷𝐼|𝐼(𝑝) ≥ 𝑘}    ... (6) 

Where𝐼, 𝐽 be the grayscale images and 𝑝 be the pixel. The grayscale transform is applied to reduce the 

number of maxima of the distance transform as follows: 

𝐷ℎ(𝐷) = 𝜌𝐷(𝐷 − ℎ)    ... (7) 

Where 𝐷 the distance transform of the binary image, 𝐷ℎ the grayscale reconstructed distance transform. For 

separating very difficult cases of touching chromosomes, pale path technique is used. 

Variant Analysis: Variant analysis technique consists of combination of two phases, rule-based phase and phase 

driven by constraint discriminant analysis. In first phase, prototypical shape elements related to touching and overlaps 

are identified recursively and in the second phase, complete and ambiguous cases are treated by using global context 

and variant analysis. 

Initially, shape descriptors such as skeleton, polygon approximation and boundary curvature are computed from 

all components. The information related to skeleton such as crossings, branching and their Euclidean distances from 

the complement is collected and represented in skeleton groups. The clear phase detects overlaps, bridges, M’s and 

T’s and cuts them. Then, ‘connected components-shape descriptors-segmentation’ is re-iterated until no more cuts 

are executed. 

The next ambiguous phase recursively creates local variants (feature set polarities and shapes) and organise the 

variants in a data structure. All global variants with an appropriate number of components are extracted from the 

data structure. These competing segmentations were classified with the constrained classifier. The solution with the 

best score was retained. 

Hypothesis and Test: This method combines classification evidence and shape evidence based on trainable shape 

models. The approach adopted here is called ‘hypothesis and test’. Based on some data driven process, candidate 

objects are initially hypothesized and the hypothesized objects are then evaluated against a model of their expected 

appearance. The model of appearance of the objects in this case is long and flexible with a recognisable banding 

pattern. Classification evidence method uses short sequences of band pattern that are not concealed by the overlapped 

region. Each segment is matched with large set of trained templates (partial chromosome models (PCMs)) to yield a 

feature vector for linear classifier. For shape evidence, a method for representing shape using trainable models was 

used. They used ‘Chord distribution model’ (CDM) for shape modelling. 

Geometric Evidence and Image Information: In this paper, touching and overlapping chromosomes are 

recursively resolved by searching a tree of choices. Based on image information and geometric evidence, the best 

combination of cuts and overlaps are chosen. Here segmentation and disentanglement is done without any 
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assumption on their number or dimension distribution. To assess whether an object is a single chromosome or a 

cluster, and to score each object, it describes a measure of single- chromosome likelihood (SCL).  

Given a blob𝐶, with area 𝐴𝑐 and with the description of its axis given by the curve 𝑎(𝑙) = [𝑥(𝑙), 𝑦(𝑙)] onto 

which the curvature 𝑘𝑎(𝑙) is computed, the score of  𝐶 is 

𝑆𝐶𝐿(𝐶) = {

0, 𝑖𝑓𝑏𝑢𝑙𝑔𝑒𝑠

9 − ∫𝑘𝑎(𝑙)𝑑𝑙 , 𝑖𝑓𝐴𝐶 < 𝑡ℎ𝐴
10 − ∫𝑘𝑎(𝑙)𝑑𝑙 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ... (8) 

Where 𝑡ℎ𝐴 is the area threshold that was heuristically set at 150 pixels and  𝑘𝑎(𝑙) is the curvature of contour ‘𝑎’ 

and it is computed as follows: 

𝑘𝑎(𝑙) =
�̇�(𝑙)�̈�(𝑙)−�̈�(𝑙)�̇�(𝑙)

(�̇�2(𝑙)+�̇�2(𝑙))
3
2

                         ... (9) 

The object that does not pass the SCL test becomes the root of a tree. Each node represents one of several cuts 

and overlaps hypotheses, which is generated based on image and geometrical evidence. The final disentanglement is 

obtained by recursively analysing each node, until the leaf of the tree is evaluated. Authors use length and area of 

split chromosome images for evaluating the best combination of hypothesis. 

Valley Searching: In valley searching algorithm, a touching cluster should be split by starting from a boundary 

concavity and following a path having lower density value than the average density of the chromosomes. The essence 

of the procedure is to find a ‘cut point’ at a boundary concavity and a path to the opposite boundary, which passes 

through a region with relatively low density using a ‘valley following’ technique. By deleting points along this path 

and redefining connected components, two separate objects are obtained. It is based on two hypotheses: where 

chromosomes touch, the boundary of the cluster tends to form concavity. The density in the touching region, 

particularly where it meets the cluster boundary, is relatively low. This method does not assume that a path passing 

through the touching region is straight. The initial direction of the path is the bisector of the boundary angle at the 

cut point. Direction is recomputed after every five points of the path have been found. The pixels ahead of the path 

and on either side are searched for the minimum density pixel which is chosen as the next path point provided that 

there is no rapid direction change. The path ends when it reaches the opposite boundary. 

Automatic Karyotype System (AKS): AKS has four novel features. The first procedure is for finding medial axis 

using cross section sequence graphs (CSSG). The second feature uses a ‘pale path’ concept for splitting banded 

touching chromosomes. The third feature, extracts a set of primitives from a chromosome cluster. The final feature 

is the use of mathematical programming models to find optimal assemblies of primitives. 

3. RESULTS AND DISCUSSION 

The segmented results of the eight methods considered in this work are shown in the following figures. Ji’s 

‘boundary curvature and pale path’ technique is simple and fast. It works well both on banded and unbanded 

chromosomes. A single cut point is needed to find a path. Most of the parameters can be adaptively changed 

according to an initial result. The problem found in this technique is, if two chromosomes are tightly packed together 

but does not overlap completely; there will not be any ‘pale’ path for separation. Sometimes the result is false 

positive, with the chromosomes being split at the centromere. If we know how deep the chromosomes are tightly 

packed or if the length of the inserted chromosome is known, we can then identify the correct split. But the length of 

chromosome is unknown until it is known that which class it belongs to.  

 
Fig.2. Ji’s approach for chromosome image segmentation (a) direction of pale path(b) original 

unsegmented image(c)final segmented image 

Figure 2 shows the pale path concept of Ji (1989). The figure 2(a) shows the search range, directions, angle 

and resultant path. Searching starts at point Pj. The first direction is indicted by angle Pj-k, Pj, Pj+k. Small arrows 

indicate the following search ranges and directions. There is a big boundary curvature at Pj. The point Pj is the 

possible cut point, which is confirmed by the pale path. Fig 2(b) shows the original image and fig 2(c) shows the 

resultant segmented image obtained by using Ji’s method (1989). 

Next, the variant analysis technique proposed by Ritter and Gao (2008), is based on global statistical information 

on karyogram to select the correct cuts from the proposed ones. It consists of two phases. In the first phase, shape 

elements indicating touching or overlaps are detected. In the second phase, ambiguous cases are treated. Prototypical 

shape elements are detected in both phases, in a conservative or in an offensive way. 
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Figure.3.Segmentation results of variant analysis technique (a) an L-configuration with its skeleton and 

its two variants (b) an ambiguous X-configuration and its three variants 

Relying on the clear phase leads to complex rules and descriptors; similarly, relying on the ambiguous phase 

alone leads to a combinatorial explosion in majority of cases. Therefore, they try for the balance of the two. The 

problem arises in this method are: bent chromosomes are hard to differentiate from two chromosomes touching at 

their tips; narrow centromeres resembling two lightly touching chromosomes in a line; artificial holes in 

chromosomes looking like genuine holes between touching and overlapping chromosomes. Also to describe the 

shape elements about 170 parameters are needed and also it requires runtime of few hours for complex cases. Figure 

4 shows the result of segmentation obtained by using the variant analysis technique. Figure 3(a) shows an L-shaped 

configuration and its variants, and after classification it is found that the second variant is correct. Similarly figure 

3(b) shows an ambiguous X-shaped configuration and its three variants, and the third variant is found to be correct.  

Figure 4 shows the result of chromosome splitting step obtained by using the algorithm proposed by Popescu 

(1999). The cross section sequence graphs (CSSG) proposed by Popescu (1999), is less sensitive to noise and 

produces more perceptive junctions than standard skeletonization method. For splitting banded chromosomes, this 

system uses pale path concept. Figure 5 shows the segmentation result obtained by Karvelis (2005), which is based 

on recursive watershed transform. Recursive watershed transform, recursively applies watershed transform for the 

separation of touching objects in images. But this work resolves only touching group of chromosomes and not 

overlapping chromosomes. 

 

 
Fig.4.Result of the chromosome splitting by CSSG method (a) original image (b) segmented image 

 

 
Fig.5.Results of recursive watershed transform technique (a) Original image (b) initial segmentation (c) 

final segmentation after 2 iterations 

Figure 6 shows the segmentation of chromosomes by the ‘valley searching’ technique imposed by Ji (1994).  

Valley searching technique attempts to find a valley of gray values corresponding to separation between touching 

groups of chromosomes. Initially, along the boundary of chromosomes all high concavity points are detected. Next, 

minimum density path between touching chromosomes is detected by performing a heuristic search. Even though 

these methods state a high rate for segmenting touching and overlapping chromosomes they use large number of 

parameters. Also the pale path feature is inconsistent when two chromosomes touches very closely or partially 

overlapped, as the splitting path is not visible and there is no clear indentation. Figure 6 (a) shows the segmentation 

of touching chromosomes: (a) shows the cluster of touching chromosomes and its boundary and convex hull. c1, c2 

and c3 mark the concavity regions and the potential cut points; (b) shows the pale path and (c) the resolved cluster. 

Figure 6 (b) shows the segmentation of overlapping chromosomes (a) shows the original overlapped chromosome 

images and (b) is the decomposed images. 
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Fig.6.Segmentation results of valley searching technique 

 

 
Fig.7.Segmentation results of CPOOS method a) original image b-c) segmented images 

Figure 7 shows the segmentation result obtained by Lerner (1998), CPOOS method. CPOOS is a 

classification driven method for segmenting partially occluded objects that combines a simple segmentation stage 

and recognition phase. It uses object curvature and intensity image. The object which creates the occlusion is 

identified by incorporating ‘apriori’ information. This information is used to set the number of classifier outputs 

which allows a lower complexity network and shorter training sessions. This method only handles the image with 

only one cluster and clusters with only two objects. The first image of figure 7 shows the original image of touching 

chromosomes and the next images are the segmented images. The profiles are measured along the medial axis. 

 
Fig.8.Segmentation result obtained by using geometric evidence and image information (a) initial 

touching chromosomes (b) final segmentation 

 

 
Fig.9.Overlap resolving procedure of Hypothesis and Test strategy 

Figure 8 shows the segmentation of touching chromosomes by using ‘geometric evidence and image 

information, technique imposed by Grisan (2009). This method tackles segmentation, overlaps and adjacencies. This 

algorithm is tested on real images and has reasonable computational complexity. Figure 9 shows how two-

chromosome overlap is resolved by ‘Hypothesis and Test’ strategy imposed by Graham (2002). Figure 9 (a) shows 

four labelled isolated segments. These can combine to form six hypothesized chromosomes in three different 

solutions: (b) 1+4; 2+3, (c) 1+3; 2+4 and (d) 1+2; 3+4. The probability of these hypotheses corresponding to genuine 

chromosomes can be assessed on the basis of shape. The chromosomes in (b) look most likely; those in (d) seem 

reasonable; those in (c) appear to be the least likely solution. The banding pattern can also be used to assess the 

hypotheses by matching templates of short lengths of banding pattern to the visible segments. This hypothesis and 

test method is limited to resolve two chromosome clusters. If same evidence could be used for larger clusters, the 

complexity of analysis increases with number of chromosomes involved. Again it is evaluated using simulated 

overlaps and it does not generate objects of unusual appearance. 

DISCUSSION 

The eight disentangling methods considered in this work are based on five main ideas: pale paths (between 

touching chromosomes), shape validation, shape concavities, the skeleton and segmentation driven by classification, 

as already mentioned in section I. Even though every single method has its own weakness and strengths, the ones 
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belonging to the same category have a tendency to share similar values in performance assessment. Table 1 shows 

the comparison of various methods for chromosome segmentation found in the literature. Ji’s (1989; 1994), method 

analyses skeleton and boundary based on curvature and convex hull. It forces the image to contain reasonable number 

of chromosomes (45-47) regardless of their likelihood and of the actual number of chromosomes in image. The 

splitting phase is based on pale path. It resolves only X-shaped overlaps using geometric evidence provides an 

interesting comparison with the use of shape evidence. This method is applicable only for unbanded chromosomes 

and as there are many pale paths in banded chromosomes it is difficult to apply pale path concept.  

To overcome this difficulty, Popescu (1999), proposed a technique for pale path cutting that evaluates the 

resulting candidate chromosomes in hypothesis and test strategy. This study also deals with overlapping 

chromosomes by assessing hypothesized objects constructed from segments based on their banding pattern. This 

method analyses the boundary and axis shape that is less heuristic than Ji (1989; 1994). Agam and Dinstein (1997), 

uses shape evidence for resolving clusters. This approach is applicable to touching or slightly overlapping 

configurations (T-shaped). It evaluates hypotheses using simple, heuristic shape models. Lerner et al. uses [16] 

banding evidence for resolving clusters. This method assesses the hypothesized chromosomes by classification of 

banding pattern with an MLP neural network. It combines the choice of correct cluster disentanglement with the 

classification stage, resulting in classification driven segmentation. Also it is suitable to separate clusters of two 

chromosomes only. It also has a serious constraint that, classes of chromosomes involved need to be known ‘apriori’. 

After classification of isolated chromosomes, this ‘apriori’ knowledge is obtained by using simple elimination 

criterion. But this is not reasonable, because, it needs only one overlap per cell and all the remaining chromosomes 

are needed to be classified with high accuracy. To overcome the constraint, Popescu (1999), adopts optimization 

strategy. It achieves lower correct recognition rate for overlapping chromosomes, but for more difficult clusters it 

applies a much more realistic analysis. 

Graham (2002), uses trainable models of shape to resolve difficult cases allowing shape and classification 

evidence to be combined with probabilistic classification evidence. This approach integrates segmentation and 

classification to resolve overlaps and adjacencies. It uses split and merge approach in the context of an iterative 

system to overcome the difficulty of applying pale path technique to banded chromosomes. Ritter and Gao (2001), 

also combine segmentation and classification, but relies on generation of number of possible chromosome 

configuration called variants. This method can resolve almost all type of overlapping configurations. But, it has the 

following disadvantages: a) it assumes that, there  is a limited and known set of configurations onto which the 

chromosomes may be arranged, b) use of heuristic set of rules to identify a cluster from a single chromosome,               

c) assumes that image contains the whole set of cell chromosomes, d) high number of variants taken into account, 

which shows great difficulty in resolving clusters with high number of chromosomes involved, e) high number of 

parameters to set and long computational time.  

Table 2 shows the number of chromosomes used by the authors for testing their individual techniques and 

the accuracy obtained. Authors use more number of chromosomes for testing their algorithm, but they attained low 

accuracy compared to others. This low accuracy is due to the presence of wrong cuts in the clear and ambiguous 

phases and missing cuts in the ambiguous phase. Lerner et al. [16] uses only few hundreds of chromosomes, but they 

attained comparatively better performance.  Figure 10 is the plot of number of chromosomes used for testing against 

accuracy. 

 

Table.1.Comparison of various chromosome disentanglement methods found in the literature 

Communication Popescu Ji  Ji Grisan Graham Ritter & 

Gao 

Karvelis Lerner 

Pale path * * * *   *  

Concavities * * *   *   

Skeleton   * *  *   

Shape validation *   * * *   

Segmentation driven by 

classification 

    * *  * 

banded * *  * * *  * 

unbanded   *    *  

overlap *  X-

shaped 

* * all  Slightly 

(T-

shaped) 

touching  *  *   *  
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Table.2.Number of chromosomes used for testing and accuracy comparison 

No. of chromosomes 3979 11279 19719 6683 6177 28148 940 481 

accuracy 83 95 91-95 94 86.2 55 92 82.6 

 

 
Fig.10.Plot of number of chromosomes against accuracy 

4. CONCLUSION 

In this paper, we have considered eight disentangling methods for chromosome image segmentation. Each 

one has its own strong and weak points. Valley searching and recursive watershed algorithms are suitable only for 

unbanded chromosomes. Most authors resolves only touching chromosomes or slightly overlapping chromosomes. 

Even if they deal overlapped chromosomes, the method is tested using simulated overlaps. For resolving touching 

chromosomes, pale path technique is commonly used. Besides all these method, variant analysis technique resolves 

almost all types of overlap configurations, but gives lower accuracy compared to other methods. This low accuracy 

is mainly because of wrong cuts and missing cuts. In terms of accuracy, the techniques ‘boundary curvature and pale 

path’, ‘valley searching’ and ‘geometric evidence and image information’ have almost same result. But geometric 

evidence and image information technique is considered to be best, as it resolves both touching and overlapping 

chromosomes. 
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